• Users Online: 24
  • Print this page
  • Email this page


 
 Table of Contents  
ORIGINAL RESEARCH ARTICLE
Year : 2020  |  Volume : 9  |  Issue : 3  |  Page : 110-114

Cardiac changes in severe and moderate acute malnutrition


Department of Pediatrics, Shyam Shah Medical College, Rewa, Madhya Pradesh, India

Date of Submission30-Mar-2021
Date of Decision20-May-2021
Date of Acceptance31-May-2021
Date of Web Publication30-Jun-2021

Correspondence Address:
Dr. Mukesh Kumar Prajapati
D-2/8 Doctors Colony, Rewa – 486 001, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jpai.jpai_4_21

Rights and Permissions
  Abstract 


Objectives: To assess the cardiac changes in moderately malnourished (MAM) and severe acute malnutrition (SAM) children. Methodology: A cross-sectional, observational study conducted over a period of 1 year. The study included 150 children, 50 from each group, first being children with SAM, second being MAM children, and third group included normally nourished, age-matched children between 6 and 60 months, admitted in the pediatric ward. Structural and functional echocardiography parameters were compared in these groups. Statistical analysis was conducted using the SPSS software version 20. Results: SAM children showed significant reduction of structural (except left ventricular internal diameter [LVID]) and functional cardiac parameters as compared to other groups. Major anthropometric parameters including body surface area (BSA) were correlated with all structural cardiac parameters; left ventricular mass (LVM) strongly correlated (r = 0.773) but no correlation was found with functional cardiac parameters. Conclusion: Structural (except LVID) and functional cardiac changes were significantly reduced with malnourishment. We had also concluded BSA of children strongly correlated with structural cardiac parameters such as LVM and interventricular septum thickness with specific age and sex.

Keywords: Echocardiography, moderately malnourished, myocardial function, severe acute malnutrition


How to cite this article:
Singh JK, Prajapati MK, Dwivedi D, Agnihotri S. Cardiac changes in severe and moderate acute malnutrition. J Pediatr Assoc India 2020;9:110-4

How to cite this URL:
Singh JK, Prajapati MK, Dwivedi D, Agnihotri S. Cardiac changes in severe and moderate acute malnutrition. J Pediatr Assoc India [serial online] 2020 [cited 2023 Oct 2];9:110-4. Available from: http://www.jpai.in//text.asp?2020/9/3/110/320123




  Introduction Top


Malnutrition in children is a worldwide health problem and is considered a major cause of childhood morbidity and mortality.[1] Worldwide, approximately 2.1 million children die annually as a direct consequence of malnutrition.[2],[3] Severe acute malnutrition (SAM) remains a frequent cause of pediatric hospitalization in much of the developing world.[4] According to National Family Health Survey-IV, in India, 35.8% of children below 60 months of age suffer from underweight (below 2 standard deviations, based on the WHO standard), but in Madhya Pradesh, it is so higher 42.8%.[5]

Over several decades, investigators have tried to determine the most common causes of death

in children with SAM.[6],[7],[8] Because malnourished children suffer from several alterations in body composition, with loss of heart and skeletal muscle mass, complicated by electrolyte abnormalities and mineral or Vitamin deficiencies that could produce cardiac abnormalities including hypotension, cardiac arrhythmias, cardiomyopathy, cardiac failure, and even sudden death.[9],[10],[11],[12],[13],[14],[15],[16]

The present study was to see myocardial changes inform of structural and functional parameters, in severely, moderately malnourished (MAM), and normally nourished children


  Methodology Top


A cross-sectional observational study was conducted in severe malnutrition therapeutic unit and Pediatric Cardiology Clinic of Department of Pediatrics in Tertiary Care Hospital of central India over a period of 12 months from October 2018 to September 2019. After ethical approval, informed consent was taken from parents of all children. Children were divided into three groups, Group 1 being children with severe acute malnutrition (SAM), Group 2 being MAM children, and Group 3 included normally nourished children; age of children between 6 and 60 months admitted in the pediatric ward of both sexes. The study included 150 children, 50 from each group. A structured Performa was filled for every child enrolled in the study.

The inclusion criteria for SAM children (age 6 month to 60 month) were weight for height/length <3 standard deviation (SD), mid upper arm circumference (MUAC) of <11.5 cm, and bipedal nutritional edema. MAM children were identified as weight for height/length between 2SD and 3SD and MUAC ≥11.5 and <12.5 cm.

Children who were born either premature or small for gestational age, known cardiac disease (congenital heart disease, pericarditis, myocarditis, and cardiomyopathy), severe anemia (hemoglobin level <6 g/dl), known metabolic and endocrine disorders, diabetes mellitus, thyroid disorder, and any congenital malformation (e.g., cleft lip, cleft palate, and any major deformity) were excluded from the study.

The prevalence of cardiac changes in malnourished children was not known in Central India so we randomly selected 50 children for each SAM, MAM, and normal, respectively. All enrolled children underwent detailed history, clinical examination, including anthropometry (weight, length/height, mid-upper arm circumference, body mass index (BMI),[17] body surface area (BSA),[18] routine investigations including complete blood counts, serum electrolytes, and echocardiography to assess cardiac function.

Echocardiography

M-mode, 2D-echocardiography[19] was performed using Philips HD7XE Echo Machine to record following parameters; structural cardiac parameters in form of interventricular septum thickness (IVS), left ventricular internal diameter (LVID), and left ventricular posterior wall thickness (LVPW) during systole and diastole were measured and left ventricular mass (LVM) and LVM index was calculated by the following formula*. Functional cardiac parameters in form of ejection fraction (EF), fractional shortening (FS), and stroke volume (SV) were measured.

LVM was calculated as (g)*

LVM = 0.80[(LVIDd + IVSd + LVPWd)³- (LVIDd)³] × 1.04]+0.6.[20]

LVM index (g/m2) = LVM/BSA.[21]

IVSd is an interventricular septal thickness during diastole.

LVPWd in a LVPW during diastole.

BSA.

Multiple echocardiography views are used for visual inspection and left ventricle function may be subjectively classified into normal function of (EF ≥55%), mild dysfunction (EF 41%–55%), moderate dysfunction (EF 31%–40%), and severe dysfunction (EF ≤30%)[22] and normal function of FS (FS 26%–45%), mild dysfunction (FS 20–25%), moderate dysfunction (FS 15%–19%), and severe dysfunction (FS ≤14%).[23],[24] Normal reference values of structural echocardiographic parameters (Park Pediatrics cardiology textbook 6th edition).[25]

Statistical analysis

Statistical analysis was conducted using the IBM Company, Chicago, United State of America. The numerical data have been represented as mean ± 2SD for more than two groups we used a one-way ANOVA test. Pearson correlation coefficients were used to assess the association of various anthropometric and cardiac parameters and multiple regressions for association and outcome measures of anthropometric and cardiac parameters. P < 0.05 was considered statistically significant.


  Results Top


The study included 150 children of age matched was 6 months to 5 years; out of 150 children, 50 in each group. It was found that 72% of male children in Group 1, 64% in Group 2, and 56% in Group 3. Mean values of various anthropometric parameters in our study such as mean weight of Group 1, Group 2, and Group 3 6.62 kg (0.23, standard error of the mean [SEM]), 8.62 kg (0.31, SEM), and 10.8 kg (0.35, SEM), respectively. The mean height of Group 1, Group 2, and Group 3 are 70.7 cm (1.27, SEM), 75.1 cm (1.41, SEM), and 81.8 cm (1.49, SEM), respectively. The mean BMI and BSA of all three groups of children is shown in [Table 1]. Age was similar between the groups (P = 0.791). However, weight, height, BMI, and BSA were significantly differenced in a group of children (P < 0.05) [Table 1].
Table 1: Baseline characteristics of severely malnourished, moderately malnourished, and normal children

Click here to view


Univariate analysis of various cardiac parameters

In the univariate analysis, we found all structural [Figure 1] and [Figure 2] parameters except LVID during systole and diastole (LVIDs and LVIDd) were significantly reduced in SAM children as compared to MAM and normal children. Functional cardiac parameters such as ejection fraction, FS and SV were significantly low in SAM children [Figure 3] and [Table 2].
Table 2: Structural* and functional# cardiac parameters of patient cohort

Click here to view
Figure 1: Fractional shortening (FS), Ejection fraction (EF) And Stroke volume (SV) Compared in Children With SAM, MAM and Normal Control

Click here to view
Figure 2: Comparison in SAM, MAM and normal children of various Structural parameters

Click here to view
Figure 3: Comparison in SAM, MAM and normal children of functional parameter

Click here to view


Pearson correlation coefficient used for the relationship between anthropometric and cardiac parameters [Table 3]. BSA positively correlates with various structural cardiac parameters such as IVSs, LVPWs, LVIDs, LVMI, and LVM. We found that LVM was strongly correlated with body surface area. According to this LVM increased with BSA and it is important to consider with age and sex. Multiple linear regression coefficients [Table 4] showed relationship between BSA and cardiac parameters (excluded BMI, height, and weight). We found that LVM and BSA associated with each other. BMI was found to have positive correlation with structural and functional cardiac parameter.
Table 3: Pearson correlation between anthropometric and cardiac parameters of malnourished and normally nourished children

Click here to view
Table 4: Multiple regression between anthropometric data and cardiac parameters

Click here to view



  Discussion Top


In this study, we found if severity of malnutrition increased so structural cardiac parameters were decreased (except LVID). In a previous study,[9],[10],[26],[27] they found similar results in SAM children; structural cardiac dimensions were significantly reduced in comparison to normal children. El Razaky et al.[28] studied comparison of cardiac changes between MAM and healthy children, they found similar result.

We had found cardiac functional parameters (EF, FS, and SV) were significantly reduced with malnutrition increased. However, these changes were within the normal limits. Most of the previous studies[10],[11],[29] were based on the comparison of SAM versus normal children. They hypothesized that significant ventricular dysfunction occur in SAM children and these changes in malnourished children affect morbidity and mortality due to fluid management. However, in our study, we hypothesized that cardiac changes were within normal limits, so not affecting fluid management in malnourished children, but our study is limited by not doing serial Echo after fluid management. In a recent study Brent et al.[30] found that no cardiac changes occur during fluid therapy in malnourished children. They found that perturbations of myocardial function were secondary to underlying complications or co-morbidities, and there were few differences between the kwashiorkor and marasmic phenotypes. According to the current WHO guideline avoiding to the administration of fluid in SAM children, these guidelines are based on expert opinion, so remains controversial.[31],[32] Previously El Razaky et al.[28] compared functional cardiac parameter between MAM and healthy children, FS dimension was included and they found it significantly low in MAM children. It may due to the small sample size.


  Conclusions Top


Structural (except LVID) and functional cardiac changes were significantly reduced with malnourishment. We had also concluded BSA of children strongly correlated with structural cardiac parameters such as LVM and IVSs with specific age and sex.

Limitation of this study required to see these changes reversible or not by serial ECHO may guide the recovery of structural and functional myocardial changes after proper nutrition therapy and after fluid therapy serial ECHO may be done to confirm whether these functional changes affects ventricular function or not. These changes also divide acute versus chronic malnutrition conditions.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Suskind RM, Tontisirin K, Nestlé Nutrition SA, editors. Nutrition, Immunity, and Infection in Infants and Children. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 445.  Back to cited text no. 1
    
2.
Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008;371:417-40.  Back to cited text no. 2
    
3.
Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008;371:243-60.  Back to cited text no. 3
    
4.
Bhutta ZA, Berkley JA, Bandsma RH, Kerac M, Trehan I, Briend A. Severe childhood malnutrition. Nat Rev Dis Primers 2017;3:17067.  Back to cited text no. 4
    
5.
Bhatia M, Dwivedi LK, Ranjan M, Dixit P, Putcha V. Trends, patterns and predictive factors of infant and child mortality in well-performing and underperforming states of India: A secondary analysis using National Family Health Surveys. BMJ Open 2019;9:e023875.  Back to cited text no. 5
    
6.
Maitland K, Berkley JA, Shebbe M, Peshu N, English M, Newton CR. Children with severe malnutrition: can those at highest risk of death be identified with the WHO protocol? PLoS Med 2006;3:e500.  Back to cited text no. 6
    
7.
Bachou H, Tumwine JK, Mwadime RK, Tylleskär T. Risk factors in hospital deaths in severely malnourished children in Kampala, Uganda. BMC Pediatr 2006;6:7.  Back to cited text no. 7
    
8.
Talbert A, Thuo N, Karisa J, Chesaro C, Ohuma E, Ignas J, et al. Diarrhoea complicating severe acute malnutrition in Kenyan children: A prospective descriptive study of risk factors and outcome. PLoS One 2012;7:e38321.  Back to cited text no. 8
    
9.
Olivares JL, Vázquez M, Rodríguez G, Samper P, Fleta J. Electrocardiographic and echocardiographic findings in malnourished children. J Am Coll Nutr 2005;24:38-43.  Back to cited text no. 9
    
10.
Ocal B, Unal S, Zorlu P, Tezic HT, Oğuz D. Echocardiographic evaluation of cardiac functions and left ventricular mass in children with malnutrition. J Paediatr Child Health 2001;37:14-7.  Back to cited text no. 10
    
11.
Olowonyo MT, Ogunkunle OO, Akinbami FO, Jaiyesimi F. The echocardiographic findings in kwashiorkor. J Trop Pediatr 1995;41:74-6.  Back to cited text no. 11
    
12.
Dramaix M, Brasseur D, Donnen P, Bawhere P, Porignon D, Tonglet R, et al. Prognostic indicates for mortality of hospitalized children in central Africa. Am J Epidemiol 1996;143:1235-43.  Back to cited text no. 12
    
13.
Patrick J. Death during recovery from severe malnutrition and its possible relationship to sodium pump activity in the leucocyte. Br Med J 1977;1:1051-4.  Back to cited text no. 13
    
14.
Piza J, Cespedes R, Troper L, Miller JH, Berenson GS. Myocardial lesions and heart failure in infantile malnutrition. Am J Trop Med Hyg 1971;20:343-55.  Back to cited text no. 14
    
15.
Wharton BA, Howells GR, McCance RA. Cardiac failure in kwashiorkor. Lancet 1967;2:384-7.  Back to cited text no. 15
    
16.
Smythe PM, Swanepoel A, Campbell JA. The heart in kwashiorkor. BMJ 1962;1:67-73.  Back to cited text no. 16
    
17.
Garrow JS, Webster J. Quetelet's index (W/H2) as a measure of fatness. Int J Obes 1985;9:147-53.  Back to cited text no. 17
    
18.
Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J Pediatr 1978;93:62-6.  Back to cited text no. 18
    
19.
Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010;23:465-95.  Back to cited text no. 19
    
20.
Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977;55:613-8.  Back to cited text no. 20
    
21.
Daniels SR, Meyer RA, Liang YC, Bove KE. Echocardiographically determined left ventricular mass index in normal children, adolescents and young adults. J Am Coll Cardiol 1988;12:703-8.  Back to cited text no. 21
    
22.
Margossian R, Schwartz ML, Prakash A, Wruck L, Colan SD, Atz AM, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study)†† A list of participating institutions and investigators appears in the Appendix. Am J Cardiol 2009;104:419-28.  Back to cited text no. 22
    
23.
Gutgesell HP, Paquet M, Duff DF, McNamara DG. Evaluation of left ventricular size and function by echocardiography. Results in normal children. Circulation 1977;56:457-62.  Back to cited text no. 23
    
24.
Rogé CL, Silverman NH, Hart PA, Ray RM. Cardiac structure growth pattern determined by echocardiography. Circulation 1978;57:285-90.  Back to cited text no. 24
    
25.
Lai WW, Mertens LL, Cohen MS, Geva T, editors. Appendix 1. In Echocardiography in Pediatric and Congenital Heart Disease. Oxford (UK): Wiley-Blackwell; 2010.  Back to cited text no. 25
    
26.
Di Gioia G, Creta A, Fittipaldi M, Giorgino R, Quintarelli F, Satriano U, et al. Effects of malnutrition on left ventricular mass in a North-Malagasy children population. PLoS One 2016;11:e0154523.  Back to cited text no. 26
    
27.
Faddan NH, Sayh KI, Shams H, Badrawy H. Myocardial dysfunction in malnourished children. Ann Pediatr Cardiol 2010;3:113-8.  Back to cited text no. 27
    
28.
El Razaky O, Naeem A, Donia A, El Amrousy D, Elfeky N. Cardiac changes in moderately malnourished children and their correlations with anthropometric and electrolyte changes. Echocardiography 2017;34:1674-9.  Back to cited text no. 28
    
29.
El-Sayed HL, Nassar MF, Habib NM, Elmasry OA, Gomaa SM. Structural and functional affection of the heart in protein energy malnutrition patients on admission and after nutritional recovery. Eur J Clin Nutr 2006;60:502-10.  Back to cited text no. 29
    
30.
Brent B, Obonyo N, Akech S, Shebbe M, Mpoya A, Mturi N, et al. Assessment of myocardial function in Kenyan children with severe, acute malnutrition: The cardiac physiology in malnutrition (CAPMAL) study. JAMA Netw Open 2019;2:e191054.  Back to cited text no. 30
    
31.
Houston KA, Gibb JG, Maitland K. Intravenous rehydration of malnourished children with acute gastroenteritis and severe dehydration: A systematic review. Wellcome Open Res 2017;2:65.  Back to cited text no. 31
    
32.
Brewster DR. Critical appraisal of the management of severe malnutrition: 3. Complications. J Paediatr Child Health 2006;42:583-93.  Back to cited text no. 32
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methodology
Results
Discussion
Conclusions
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1687    
    Printed154    
    Emailed0    
    PDF Downloaded105    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]